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Abstract 
A method is proposed to calculate pore pressure at the bit while drilling using all data typically available 

in a modern drilling rig.  This method utilizes a machine learning approach that can estimate pore pressures 

at the same or a narrower range of uncertainty as traditional methods and can do so at the bit in real-time.  

Traditional pore pressure estimation while drilling utilizes a combination of data sources most of which 

are detected from sensors placed 100’s of feet behind the drill bit (where resistivity, sonic, density etc. 

tools are commonly placed).  Furthermore, smoothing algorithms are often used to average the detection 

data thus increasing the offset from the drill bit to the estimated pore pressure calculation.  The result of 

this is that the pore pressure calculation while drilling is only relevant to the formation that has already 

been penetrated and not being actively drilled.  In hole sections where minor pore pressure changes can 

have significant impact on operational decisions this has obvious disadvantages.  However, while drilling 

a well, multiple sources of sensory data are being received from the drill bit itself and yet are typically left 

unused in pore pressure calculation.  Whereas traditional methods give an estimate of pore pressure after 

the well has already experienced a change in pressure, this method can calculate pore pressure at the bit, 

as the change is experienced.  Another benefit of applying a machine learning model to pore pressure 

calculation while drilling is that the computational time is almost instantaneous.  

 

Introduction 
‘Traditional’ approaches to pore pressure estimation from subsurface logging tools are primarily based on 

the concept of porosity preservation with depth which compares measured porosity with a ‘normal 

compaction trend’ which assumes hydrostatic conditions.  There are a variety of methods to conduct 

‘traditional’ log data to pore pressure translations but, it could be argued that most of these originate from 

Eaton’s 1975 Paper “The equation for geopressure prediction from well logs” (Eaton 1975).  In this paper 

Eaton proposed an equation for calculating pore pressure from resistivity, conductivity, sonic velocity and 

the D-exponent.  These empirically-derived equations are based on a similar theoretical basis; that 

overburden stress is equal to the matrix stress in addition to the pore pressure and uses the concept of a 

normal compaction trend to calculate pore pressure.  Compaction of sediments due to overburden stress 

was described by Terzaghi and Peck in 1948 and demonstrated that increased fluid pressure reduces the 

‘effective stress’ on the matrix thus reducing compaction.  Therefore, increased porosity with depth can 

be taken as a proxy for undercompaction related to fluid retention and thus overpressure (Athy 1930, 

Terzaghi 1948, Hubert and Rubbey 1959, Eaton 1975).  In order to calculate pore pressure from subsurface 

logging tools a ‘normal compaction trend’ must be defined in order to reference the calculation to a fixed 

fluid gradient.  This trend line is usually defined by a power law, or exponential equation based either off 

log trends from known normal pressure intervals and measurements, or by back calculating from a plot of 

known fluid pressure gradients vs. observed log values.  The definition of a normal compaction line is 

subjective as measured data rarely forms a tight trend with a very high R2 value.  In effect the normal 

compaction trend is a geological interpretation subject to data availability, quality and experience of the 

analyst.  

 

There are several other mechanisms of pore pressure generation other than compaction disequilibrium, 

clay diagenesis, unloading, etc., however, the detection of pore pressure while drilling is still primarily 

practiced via the use of subsurface logging tools and gas data.  Subsurface logging sensors (Sonic, 

Resistivity, Density etc.) can be used as a proxy for porosity measurements and are collected while drilling 

using Logging While Drilling (LWD) tools.  A bottomhole assembly (BHA) can be configured in a 
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multitude of ways but the LWD tools are always some distance behind the bit itself and typically placed 

100-200ft behind the bit.   

 

The use of drilling data to detect pore pressure is rooted in the fundamental assessment that drilling a well 

disturbs the stress state of the subsurface.  As pore fluid pressure is an innate component of the stress state 

in the rock it is therefore a determining factor in the energy required to break the rock. The obvious 

advantage of drilling-based pore pressure is that the calculation is based on data at the bit; as opposed to 

being offset by LWD placement on the BHA.  In effect, the drill bit becomes the sensor. 

 

The effect of drilling responses to pore pressure is not a new technique; Jorden and Shirley first proposed 

this in 1966 and has been commonly known as the ‘D-exponent’ (Jorden & Shirley 1966).  The ‘D-

exponent’ method relies on the concept that an increased drilling rate is related to drilling higher porosity 

medium to softer shales which are in turn assumed to be related to overpressure (Equation 1). The ‘D-

exponent’ has since been modified by numerous authors for use in a variety of environments.  

Fundamentally the D-exponent is not relevant to modern drilling practices as Rate of Penetration (ROP) 

is often controlled (and thus not a variable result) and modern drill bits, notably PDC bits, cut the rock 

through applied torque as opposed to crushing the rock in compression through the Weight on Bit (WOB).  

Majidi et al (2016) significantly advanced the concept of using drilling parameters to detect pore pressure 

using Mechanical Specific Energy (MSE).  MSE is based on a physical model which incorporates torque 

and WOB to calculate the energy required to drill the rock (Equation 2, Majidi et al 2016).  Calculating 

pore pressure from MSE is done via the use of a ‘drilling efficiency’ component which relates Confined 

Compressive Strength (CCS)to MSE.  Pore pressure is then calculated in a similar way to traditional 

methods (e.g., Eaton) via the change in drilling efficiency compared to a ‘Normal’ drilling efficiency trend 

line (Equation 3, DE trend) which is assumed via a power law relationship, similar to that of Athy’s 

porosity decline with depth (Majidi at al 2016, Athy 1930).  What defines the ‘normal’ drilling efficiency 

trend is, of course, subject to analog data availability and potentially fallible human decision making.  

 

𝐷 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 =  
log (𝑅𝑂𝑃/60𝑅𝑃𝑀) 

log ((12 ∗ 𝑊𝑂𝐵)/(10^6 𝐷))
 

Equation 1 

 

Where ROP is rate of penetration, RPM is revolutions per minute, WOB is weight on bit and D is the 

Diameter of the drillbit. 

 

𝑀𝑆𝐸 =
480 ∗ 𝑇𝑞 ∗ 𝑅𝑃𝑀

𝐷𝑏𝑖𝑡
2 ∗ 𝑅𝑂𝑃

+
4 ∗ 𝑊𝑂𝐵

𝜋𝐷𝑏𝑖𝑡
2  

Equation 2 

 

Where MSE is mechanical specific energy, Tq is torque, ROP is rate of penetration, RPM is revolutions 

per minute WOB is weight on bit and D is the diameter of the drillbit 

 

 

𝑃𝑝 = 𝑃𝑛 + ∆𝐷𝐸 ∗ 𝑀𝑆𝐸 ∗
1 − 𝑆𝑖𝑛 𝜃

1 + 𝑆𝑖𝑛𝜃 
 

Equation 3a 

 

Where Pp is pore pressure, 𝑃𝑛 is normal hydrostatic pressure, DE is drilling efficiency, and 𝜃 is the angle 

of internal friction 
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Where: 

∆𝐷𝐸 =  𝐷𝐸𝑝 −  𝐷𝐸𝑡𝑟𝑒𝑛𝑑 

 

Equation 3b 

 

Where 𝐷𝐸𝑝 is a pseudo drilling efficiency and 𝐷𝐸𝑡𝑟𝑒𝑛𝑑 is a manually defined trend in drilling efficiency. 

 

The described method herein uses machine learning techniques which allow incorporation of all data 

available while drilling and does not require a ‘Normal’ trend to be pre-defined. 

 

Pore pressure data is, however, somewhat unique in terms of machine learning datasets.  Several previous 

authors have used machine learning engines to create pseudo logs from wells where a particular logging 

tool was not run (Gan, et. al., 2019) this has been termed ‘Log to Log transformation’.  However, applying 

the same methodology to pore pressure curves is not as clear-cut because the pore pressure curve used to 

train the model is an interpretation of an amalgam of datasets and not an exact quantitative measurement.  

A standard procedure to test the validity of any machine learning method is to compare the output from 

the model to the measured parameter.  However, in the case of pore pressure, the output is being compared 

to an interpretation which may not be 100% correct as it is not a definitive physical measurement like the 

aforementioned ‘Log to Log transformation’.  

 

One of the great challenges in pore pressure interpretation and prediction is knowing precisely what are 

the mudrock formation pressures.  While the majority of the formations drilled are mudrocks, quantitative 

pore pressure measurements are only taken in permeable formations (sands, etc.).  Attempts have been 

made to use downhole pressure sampling tools in shales (Flemings et al 2008) but this is not common 

practice.  Even if every sand in a wellbore is tested for formation pressure the pressure in the shale is still 

an interpretation.   

 

The traditional approach to pore pressure interpretations is to calculate pore pressure in mudrocks using 

empirically or lab-derived normal compaction trends (Eaton 1975) and then use the quantitative 

measurements taken in sands to calibrate the resultant pore pressure.  However, it should also be noted 

that sands and mudrocks are often not in equilibrium due to lateral transfer or other effects and this can be 

a source of error in the pore pressure interpretation (Reilly & Flemings 2010, Flemings et al 2002).  

Wellbore stability events can also be used to help calibrate the interpretation in mudrocks (wellbore break 

out, cuttings analysis, etc.) but this is often imprecise and, at best, provides a window of possible pore 

pressures over a depth interval.   

 

By using machine learning techniques this method allows incorporation of all data available while drilling 

the well including those that are not part of the above equations 1 & 2 (inclination, standpipe pressure, 

vibration etc.) and does not require a ‘Normal’ trend to be pre-defined.  Furthermore, additional ‘soft data’ 

types can be incorporated such as seismic horizons and biostratigraphy.   Machine learning techniques can 

also be trained to detect the differences between sands and shales and provide estimates of pore pressure 

in sands which is not possible in traditional techniques from either log or drilling based data.  When 

appropriately trained and QC’d this method can predict pore pressure with the same or greater accuracy 

as previous techniques while doing so at the drill bit and almost instantly. 
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Methodology & QLog Workflow 
This method utilizes an Artificial Neural Network (ANN) to generate pore pressure from a collection of 

drilling mechanics measurements including, but not limited to, Rate of Penetration (ROP), Torque (Tq), 

Revolutions per Minute (RPM), Bit Size (BIT) Weight-on-Bit (WOB), wellbore survey (Azim & Inc), At-

Bit Logging tools (GR & Res) and can also include seismic horizons or real-time biostratigraphy. For this 

study, multiple models with different inputs were tested but the emphasis was on data transmitted while 

drilling and sensed as close to the bit face as possible. 

 

This method has four main components: data conditioning, feature engineering, training optimization and 

operation.   

 

During data conditioning, drilling data, rock properties, well surveys, logs, pre-drill tops (from seismic or 

logs) and calculated pore pressure values, from offset wells are processed to create a central database with 

data for each well. Time-based data (generally from drilling) is processed to be converted to depth-based 

measurements. Calculated variables like Mechanical Specific Energy (MSE) and VShale are calculated in 

this stage.  

 

The next stage is feature engineering which defines a sliding window of input data for each target value 

and associated scaling of inputs and targets. Hyperparameter optimization is used to find an optimized 

model configuration. Generally, the principal neural network parameters that are typically optimized 

include the number of layers, number of neurons, activation functions, use of dropout layers and learning 

rate.  

 

Model training optimization is based on selected inputs and targets using the results from hyperparameter 

optimization to create optimum models. An ensemble of different models is created to allow their 

combined result to better generalize to unseen data. It does this by reducing variance, hence eliminating 

the overfitting of model. Genetic optimization is then applied where a testing well is used to find the best 

ensemble of models that will eventually be able to better predict the blind well. Based on the ensemble 

generated in the previous stage, results are applied to interpret the veracity of the model’s predictions. In 

the training phase, a model is built using selected data from a group of offset wells in the target area. The 

training model embodies the relationship between input and output data to the model; the input data to the 

model are the drilling data, together with the Gamma ray and Resistivity logs, Tops and the survey data; 

the output data are the pressure curves for the training wells. The training model output should match the 

pore pressure curves to be predicted, if this is not the case, further iteration via optimization and quality 

control must be done. An example of a training well and model creation is shown in Figure 1.  This model 

(green line) has an excellent match to the training data (dark blue line) and thus is ready to progress to the 

next stage. 
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Figure 1:  Example of training model results compared to input data.  This well has high confidence in the pore 
pressure interpretation as multiple Formation Pressure While Drilling (FPWD) measurements were taken 
throughout the well.  Resistivity, Density and Sonic curves are shown for reference but were not included in the 
trained model result (green curve in track 6).  The Model result is an excellent match to the MLPP (Most Likely 
Pore Pressure) interpretation and so this can be considered appropriate to be used in blind well simulation.  Also 
shown are MWin – Mudweight in, ECD – Equivalent Circulating Density of the mud, FG Sand – Fracture Gradient 
for Sand dominated lithologies, FG Shale -Fracture Gradient for mudrock lithologies, Overburden and Hydrostatic 
gradients.   

The final step in the process is the operation or simulation phase.  Here the pre-existing or ‘trained’ model 

is used to generate the output logs (pore pressure) for the test well from the input logs (gamma ray, 

resistivity and drilling data). The test well is withheld from the training data and commonly referred to as 

a blind well.  The model is given only the inputs and calculates the output (pore pressure).  The Training 

and Simulation phases can be somewhat iterative; if the blind result is not satisfactory, modifications can 

be made to the training optimization process and, if necessary, the input data.  Once a satisfactory ‘blind’ 

result is received a further test on a second, or more, well(s) is suggested.  If the model is performing 

satisfactorily, the training and blind wells can be rotated to test the influence of different wells on the 

result.  Feature performance evaluation can be applied to determine relative importance of input datasets 

and to ensure the model is primarily focused on the input data deemed to have the most physical relevance 

(e.g., Torque instead of Bio Strat) and not taking shortcuts by learning to ‘draw’ a curve between tops or 

at given depth values.  

 

In some cases, the output from the blind wells can provide a result that forces the user to challenge the 

initial assumptions or interpretation of the input data. An example of this can be seen at 30,000ft MD in 

Figure 3 where the post-drill assessment of the formation pressure was lower than the output from the 
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machine learning model but also, after re-checking, from the traditional acoustic velocity to pore pressure 

translation.  Adjustments from the model to the input data can, as in this example, be updated in the 

training model. Therefore, it is critical that the output of these models is verified by a subject matter expert 

before accepting or rejecting the final results. 

 

Field Use 
This method has been applied as a case study to the Stampede field in the Gulf of Mexico (GoM).  

Stampede is a subsalt Miocene oil field located in the Green Canyon protraction area (Figure 2) in the 

deep water GoM with reservoir depths of 28-30,000ft TVDss.  The wells exit salt at roughly 21,000ft and 

encounter overpressured sands and shales.  From ~26,000 ft, sands have significantly regressed pressures 

when compared to the surrounding shale sequences.  14 Wells have been drilled in the Stampede structure 

including several sidetracks (STs).  A total of 4 exploration wells were drilled by Hess and Unocal in 

2005.  The field was unitized and sanctioned in 2014 and 7 production and 3 water injection wells were 

drilled.  These development wells were drilled between 2015 and 2019 and operated by Hess.  The wells 

were drilled using the Black Lion and Black Rhino drill ships and the tool provider was largely consistent.  

For this reason, the creation of the neural network utilizes the 10 production and injection wells to train 

the models and 2 blind wells were withheld to test the method.   As previously described the blind wells 

were rotated to test model validity and influence of certain wells in the model.  

 

 
Figure 2 – Location Map of Stampede, Gulf of Mexico, USA  

The result from the machine learning derived pore pressure shows good agreement with the post drill 

assessment (PDA) of pore pressure (Figure 3). In the upper section of the wells (21,000 – 27,000ft) where 

sands are interpreted to exhibit similar pressures to the shales, the output from the machine learning model 

has consistently, through multiple iterations of the model with varying input datasets, matched the PDA.  

The regressed section, from 27,000ft and deeper, required a more detailed investigation of the input data 
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and feature performance. To match the regressed sand pressures a lithology classification tool was 

required, in this example the At Bit Gamma Ray (ABGR) tool was selected due to its proximity to the 

drill bit.  The output of the machine learning models that are shown throughout this paper are not smoothed 

or filtered; they are the direct results of the calculation at each sample point.  Smoothing is common 

practice in traditional log-based pore pressure estimation to be able to see trends more clearly and to 

eliminate small lithological variations in the formations.  Examples of unsmoothed or ‘raw’ resistivity and 

acoustic models can be seen in figure 4 tracks 3&4. 

 

Figure 3 shows the output (Model 3) from the machine learning model for the SA002 well and compared 

to the PDA assessment of pore pressure. 

 
Figure 3 – Result of the Machine learning model on a well that was held blind (not included in the training 
dataset).  The model output (solid green) which also used the ABGR as a lithology discriminator input is overlain 
on the post drill assessment (PDA) of pore pressure. The processed Gamma Ray is included in the plot for 
reference only but was not used in the calculation. Model output is in good agreement with the PDA curves and 
closely matches the measured MDT pressures in the sands.  Around 30,000ftMD the model over-predicted the 
pressure vs. the PDA however on closer inspection of the pressure interpretation, both sonic and resistivity-
derived pore pressures also indicate a higher pressure than the PDA interpretation.  These higher than previously 
interpreted values initiated a re-examination of the previous assessment, and most data would suggest changing 
the PDA to be closer to the pressures calculated via the Machine Learning Method. 

 

 



8   

To fully evaluate the model’s function and performance three models are shown each with different input 

datasets: 

 

Model 1: real-time drilling mechanics data.  

Model 2: real-time drilling mechanics data and at-bit Gamma (ABGR) 

Model 3: real-time drilling mechanics data, at-bit Gamma (ABGR), pre-drill Tops (from seismic) and 

TVD.  

 

The ‘shale only’ Model 1 was created using only drilling or rig-based data sets for the input (No Tops, no 

TVD, no ABGR) but the training data was edited so that only shale values were used as the input (Figure 

4 Track 6).  A shale only model is important because it allows this method to be more faithfully compared 

to traditional pore pressure and fracture gradient (PPFG) calculation methodologies where ‘muting’ of 

sand data is common practice.  Examples of traditional methods can be seen in Figure 4 Tracks 2-5. Here 

the editing was done to the training data set using a simple cut-off value for the Gamma Ray log to 

determine Pore Pressure values in Shale only regions.   

 

Model 2 allows all ‘hard data’ sources to be used as well as ABGR on input (Figure 4, Track 7).  As the 

ABGR log is used in the calculation as a lithology indicator, all calculations are performed at the depth of 

the ABGR sensor (5ft behind the bit).  This model allows us to use all the input data in training with no 

muting for lithology type.  It also allows the model to calculate, on output, a sand-based pore pressure 

which is an improvement over traditional pore pressure techniques. Results of Model 2 show excellent 

correlation with the PDA of pore pressure throughout the well except at 30,500ftMD where, interestingly, 

it appears closer to the result from Resistivity and Sonic-based methods. 

 

Model 3 (Figure 4 Track 8) includes all data including soft data sources (Tops, TVD, etc.) and shows 

excellent correlation with the PDA of pore pressure throughout the well and a minor improvement over 

Model 2.   The primary reason for separating Models 2 and 3 is to demonstrate that by establishing a good 

result with Model 2 the ANN is not reliant on soft data included in Model 3 i.e., the model is not taking 

shortcuts or learning to draw curves with depth tops or non-physical data. 
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Figure 4 – Comparison of the 3 discussed model outputs with outputs from ‘traditional methods’ Resistivity and 
Sonic-derived pore pressures calculated via a modified Eaton methodology.  ML-1 is a shale only model (no 
ABGR input) and is the most applicable to be compared to the resistivity and sonic-based methods.  Both 
resistivity and sonic, even when smoothed, have a large degree of variability throughout the well whereas the 
output from the machine learning model (Track 6) has a much closer match to the PDA of pore pressure in the 
shale section.  Tracks 7 and 8 show the changes to the model output when more ‘soft’ data (tops, lithology, etc.) 
are included in the calculation. 

Discussion  
This method, when correctly utilized, has the potential to provide accurate real-time pore pressure 

estimates at the bit and has been shown to be as or more accurate than traditional log or drilling methods 

at Stampede.  This method can be used in conjunction to traditional methods to enhance PPFG accuracy 

while drilling.   

 

Machine learning models work well in areas that do not differ greatly from well to well.  Unless the model 

has experienced a particular parameter it does not necessarily ‘know’ how to interpret new, unseen 

information.  In the case of the Stampede field, the pore pressure regime is relatively consistent across the 

field and as such the success of this method is more likely.  This is partly intentional as during concept 

selection for this experiment a consistent and relatively ‘simple’ dataset was selected in order to trial this 

method in this conceptual stage.  A trial on a well drilled in another subsalt field more than 60 miles away 

was not able to reproduce the PDA pore pressure.  This may be due to a wide variety of reasons, but it 

reinforces the concept that machine learning models are most accurate near their training data set.  In its 

current state this method would be most applicable to appraisal and development drilling (often the 

majority spend of field development drilling budget).  While there are obvious limitations in this study, it 

has been demonstrated on a small scale to be accurate, useful, and worthy of additional investigation. 
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Future work is ongoing to assess the broader capabilities of these methods so the use case can be expanded 

beyond a single field and can predict pressure over entire plays and for exploration wells.  In practice the 

largest challenge is not the creation or implementation of machine learning models, it is in data discovery, 

standardization, and aggregation of multiple datasets with varying formats.   

 

The machine learning output more closely matches the PDA of pore pressure when compared to single 

curves created via ‘traditional’ methods (Figure 4).  As discussed in the introduction of this paper 

fundamentally we do not actually ‘know’ in the shales which of these methods is the most accurate.  A 

machine learning model needs to be trained on data nearby and thus when the pore pressure regime does 

not vary significantly it does an excellent job at reproducing the pore pressure.  However, it should be 

noted that this is not too dissimilar to the sort of calibration required to calculate pore pressure via 

‘traditional’ methods.  When designing a pore pressure profile for an exploration well it is common to 

look at a variety of offset wells and calibrate the input parameters or equation constants (Eaton exponent, 

Bowers A & B etc.) to obtain a match between the output log-based pore pressure curve and the known 

pressure data (MDTs, kicks, gas events, etc.).  When preparing for the subsequent exploration well a pre-

drill model is created using the log to pressure translations calibrated to the offset wells. While drilling 

the well it is common to then re-calibrate these logs to pressure parameters or equation constants to 

measurements or observations seen in the well.  Essentially the same process is occurring here with the 

exception that the user is not manually calibrating or conditioning the model.   

 

This method has deliberately not included the use of standard subsurface logging tools to focus on the 

hypothesis that it would be possible to detect pore pressure using the drill bit and drilling mechanics data 

alone.  Improved functionality could be possible with utilization of subsurface logs; one approach to this 

that was considered was using the drilling mechanics data to create an initial prediction that could then be 

modified as the subsurface logs move over the formation.  Integration with seismic data would also be 

interesting to explore as this could potentially give one the ability to predict pore pressure ahead of the bit 

with the model ‘learning’ as the well is drilled. 

 

While the concept for this method is new and requires further testing this method has the power to 

potentially transform the manner that pore pressure is estimated and communicated to the drilling rig 

leading to cost savings and improved rig safety. 
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