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Abstract
Borehole-log data acquisition accounts for a significant proportion of exploration, appraisal and field
development costs. As part of Shell technical competitive scoping, there is an ambition to increase formation
evaluation value of information by leveraging drilling and mudlogging data, which traditionally often used
in petrophysical or reservoir modelling workflow.

Often data acquisition and formation evaluation for the shallow hole sections (or overburden) are
incomplete. Logging-while-drilling (LWD) and/or wireline log data coverage is restricted to mostly GR,
RES and mud log information and the quality of the logs varied depending on the vendor companies or
year of the acquisition. In addition, reservoir characterization logs typically covered only the final few
thousand feet of the wellbore thus preventing a full quantitative petrophysical, geomechanical, geological
correlation and geophysical modelling, which caused limited understanding of overburden sections in the
drilled locations and geohazards risls assessment.

Use of neural networks (NN) to predict logs is a well-known in Petrophysic discipline and has often
used technology since more than last 10 years. However, the NN model seldon utilized the drilling and
mudlogging data (due to lack of calibration and inconsistency) and up until now the industry usually used
to predict a synthetic log or fill gaps in a log. With the collaboration between Shell and Quantico, the project
team develops a plug-in based on a novel artificial intelligence (AI) logs workflow using neural-network to
generate synthetic/AI logs from offset wells logs data, drilling and mudlogging data. The AI logs workflow
is trialled in Shell Trinidad & Tobago and Gulf of Mexicooffshore fields.

The results of this study indicate the neural network model provides data comparable to that from
conventional logging tools over the study area. When comparing the resulting synthetic logs with measured
logs, the range of variance is within the expected variance of repeat runs of a conventional logging tool.
Cross plots of synthetic versus measured logs indicate a high density of points centralized about the one-
to-one line, indicating a robust model with no systematic biases. The QLog approach provides several
potential benefits. These include a common framework for producing DTC, DTS, NEU and RHOB logs in
one pass from a standard set of drilling, LWD and survey parameters. Since this framework ties together
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drilling, formation evaluation and geophysical data, the artificial intelligence enhances and possibly enables
other petrophysical/QI/rock property analysis that including seismic inversion, high resolution logs, log
QC/editing, real-time LWD, drilling optimization and others.

Introduction
Borehole-log data acquisition accounts for a significant proportion of exploration, appraisal and field
development costs. However, wireline and/or LWD logs often are not available for one or more curves for
reasons such as operational decisions, tool failure, or environmental risk. In addition to these limitations,
reservoir characterization logs typically cover only the final few thousand feet of the wellbore. This lack
of coverage prevents full quantitative petrophysical, geomechanical and geophysical modelling as well as
geological correlations. These factors result in a limited understanding of the geohazard and geomechanical
risk assessment of the overburden sections. For these situations, there is a desire to extract more value of
information from the drilling and mud logging data to generate AI logs such as DTC, DTS, RHOB and
NPHI via supervised Artificial Neural Network (ANN) modeling.

A simple structure of AI using ANN can be described of several processing elements, or nodes, that are
usually defined in layers: input, output and hidden layers. This has been used in the Petrophysics discipline
for decades and several published articles in the literature that have described the structure and operation of
AI in early 90s (e.g. Hecht-Nielsen 1990; Maren et al. 1990; Zurada 1992; Fausett 1994; Ripley 1996). AI
adoption in oil industry especially for drilling and reservoir characterization has grown during the last decay.

A review of the literature reveals several studies that have used neural networks to predict petrophysical
logs from MWD and wireline logs, (Bhatt, 2002) predict density, resistivity and neutron using wells
logs and location data, (Rolon et al 2005, Rolon et al 2009) create synthetic neutron logs using well log
data, (Ghavami, 2011) create synthetic sonic logs from well log data, (Guan, 2012), develop synthetic
geomechanical logs (Eshkalak et al. 2013, 2014) and PEF and UCS using wirelines, (Akinnikawe et al.,
2018). However, this entire body of work uses well log data and does not leverage drilling data. Based on
our knowledge, there is a limited number of published studies that use NN models based on drilling data to
generate petrophysical or geomechanical logs. For example, there are a few studies discussing converting
drilling data into logs, such as predicting the UCS from drilling rate and weight on bit (Hareland et al. 2010
and Kerkar et al., 2014), or also predicting porosity, permeability, Poisson's ratio and strength (Cedola et
al. 2017 and Tahmeen et al. 2017). However, these do predict geomechanical logs but not the petrophysical
logs. Both Lehman et al. 2016 and Scanlan et al. 2018 discussed a methodology similar to the one that is
being used by current paper to predict petrophysical logs and their application for onshore unconventional
reservoirs.

What is Machine Learning (ML) vs Artificial Intelligience (AI)?
Artificial Intelligence refers to a system that is not natural and has the ability to understand, learn or think.
Machine Learning (ML) is a subset of AI that uses algorithms and statistical models to process data to
execute a specific task relying on learned data and patterns. Artificial Neural Networks (ANN) are a type
of machine learning that could use supervised learning, unsupervised learning or reinforcement (or graded)
learning to perform a task similar to the way a human brain would. In supervised machine learning, the
training set is composed of inputs p with a corresponding set of targets t. The inputs are applied to the Neural
Network (NN) to generate outputs that are compared to the targets. Learning rules are applied to the NN to
adjust the weights and biases to get the outputs closer to the targets. Reinforcement learning is similar to
supervised learning, only that the neural network is provided a grade (or score) after some sequence of inputs
is applied. This grade is used to adjust the weights and biases of the NN. Unsupervised learning adjusts
the weights and biases based only on the inputs only, where an output is not generally available. This is
generally used for clustering applications. The architecture of a neural network defines the relation between
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inputs and outputs. Some types of neural networks are the feedforward neural networks, the convolutional
neural networks and recurrent neural networks. Feedforward neural networks are basically a network that
connects inputs to outputs using multiple layers in one pass with no backward connection. Convolutional
neural networks, and deep neural networks in general, are used generally for image classification, where
initial layers are used to identify initial features edges and corners, following with subsequent layers until
a final layer that determines if the picture is a cat or a dog.

The architecture is organized to retrieve 2D information from images. Recurrent neural networks have
feedback connections. They can exhibit temporal behavior, which can bed applied document translation and
voice recognition. Due to the nature of the LWD/wireline logs and their relation with Gamma Ray (GR)
and drilling data, feedforward neural networks are used to predict the petrophysical logs. Figure 1 shows
an example of a feedforward neural network with one hidden layer and one output layer. The weights and
biases in each layer are adjusted while in training.

Figure 1—Feedforward neural network example

Description of the AI method used in this study
The particular AI log generation method described in this paper is a commercially available, method that
has been developed over the last 6 years and has been utilized on both land and offshore environments with
certain applications having been patented. Certain land applications were the method was previously used
are described in Parshall 2015, Scanlan et al. 2018 and Lehman et al. 2016.

This ML approach utilizes an ANN to generate advanced formation evaluation logs (such as DTC, DTS,
RHOB and NPHI) from a collection of measurements including the wellbore survey, Gamma, Resistivity
(Res), and drilling dynamics such as Rate of Penetration (ROP) and Weight-on-Bit (WOB). Figure 2 show
an example of such data. During ANN model creation, the measured logs corresponding to the AI logs to
be simulated are also required.

Figure 2—Figures show Gamma ray, inclination, ROP and WOB as example of drilling and log data
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A major strength of this method compared to others is that it makes it possible to generate advanced
formation evaluation logs using the drilling data and Gamma/Res data that is routinely collected on
most wells. Additionally, the formation evaluation information content of the drilling dynamics is fully
incorporated to augment the limited content of Gamma/Res logs.

The process that needs to be followed to generate the desired logs comprises two main steps, namely the
ANN model Creation phase (building and training) and the ANN model Operation phase (log simulations
for a test well). In the training phase, a model is built using selected data from a group of offset wells in
the target area. That model embodies the relationship between input and output data to the model; the input
data to the model is the drilling data, together with the Gamma/Res logs and the survey, and the output data
is the measured logs. In the simulation phase a pre-existing model is used to generate the logs for the test
well of interest. Figure 3 conceptualizes the generation of logs using a ML-based calculation engine and a
pre-existing model. More details are given for each phase in what follows.

Figure 3—AI logs generation workflow

Model creation (Building and Training)
The first phase in the process leading to generating AI logs in a new geographical area is the creation of
a model, or preferably of a series of models. Generating several models often proves useful to account for
cases such as missing drilling data channels in the test well during the Operation phase.

A model is made of several selected wells, together with selected input channels. As a result, a series
of models or submodels can be created with similar wells in training but different combinations of input
variables. Further, submodel variations can also be used where similar wells are used but with different
depth range, or similar input channels but with differences on the modalities they are treated within the NN
algorithm (e.g. with or without removal of outliers, or forcing a parameter to be used or not, etc.).

There are several key steps followed in the model creation process:

1. Definition of the geological context
2. Data inventory/data coverage
3. Data conditioning and QC for the model building; this includes both the petrophysical logs and the

drilling data.
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a. Wells used in training
b. Wells retained as internal blinds to validate the results
c. Model building and training

4. Model validation

In what follows we'll examine some of these steps in more details. In practice, minimum number of wells
are required for model creation in the targeted area.

1. Definition of the geological context
Model creation starts by assessing the geological context and gathering available data, including the drilling
data and the existing measured logs for all the wells available. In theory, the number of wells necessary
varies depending on the geological complexity, logs characteristics, deposition environement, the aerial
extent, the depth range to cover, and the amount of data available for each well. A successful model is based
on an appropriate sampling of the various scenarios characterizing the field.

2. Data inventory/data coverage
An important step in model building is to understand the span of data available in order to be able to answer
questions such as: how many wells have data, is the data usable as is or after QC, are all necessary measured
channels available, is the entire depth range covered, are the various geological entities to be modeled
measured, is there enough coverage of the drilling data, etc.?

The initial effort of data cataloging and definition of available coverage helps in selecting the wells to
use in training (how many wells and what combination of wells). The effort continues after the step of data
conditioning and QC, going back and forth as the data sets are built, and as new data or corrected data
becomes available.

3. Data conditioning and QC
One of the main tasks that needs to be performed upfront is the gathering of the various data files and the
selection of appropriate data.

Usually the measured data is created with different formats and can contain errors, missing values or
other inaccuracies. Data channels can be duplicated. Some channels may be misaligned with others. Some
parameters can be measured or processed in different ways and recorded on several channels on the same
file or on separate files. Data conditioning therefore needs to address these issues in order to end up with
quality input data. Here are some common operations performed:

Normalization (common on Gamma data)

• Resampling

• Time-based to depth-based conversion as necessary

• Editing

• Scaling

• Depth shifting

• Merging/splicing and aggregation

Additional data QC may be required, especially for log curves to be used in training, to ensure that the
models are trained on valid data.
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At the end of the data conditioning effort, a single set of input and output data is generated for each well.
This set of data is ready to be used either in model training or simulation against an existing model.

4. Building the model(s)
Once the number and combinations of wells to use, the depth range to include for each well, and the set of
input data to specify are chosen, the Operator uses proprietary software to run the ML algorithm to generate
the models.

Overview of the ANN utilized
Every model consists of a one or more multilayer neural networks using the wellbore survey, Gamma,
Resistivity (Res), drilling dynamics and mud logs as inputs data. The selection of the number of channels
to use as input and details on how to condition them is based on the Operator experience and needs to
appropriately capture the underlying physics of the drilling process in order to build a successful model.
Each model can be set up to predict sonic, density or/and neutron logs – all are modeled independently. The
models can be configured to use either all available inputs or a subset of the input data. The subset of inputs
allows the person building the model to check the relevance of specific inputs in a given geographic area.
For example, models could be created with and without a Resistivity input channel. The final process could
determine that the use of Resistivity could improve the final results. Also, a model without Resistivity will
be useful if the Resistivity log is not available, or if the sensor has no valid data at specific depths.

Training of the NN is done by applying the selected inputs pq to the neural network and obtaining a
number of outputs aq. For each input pq is the corresponding target output tq, which we can use to calculate
the mean squared error:

(1)

where the expectation of the squared error has been replaced by the squared error at iteration k. Different
algorithms are used to adjust the weights and biases of the Neural Networks in order to minimize the mean
square error. The simplest algorithm is the Least Mean Squares (LMS) algorithm, which was generalized
by the Backpropagation algorithm, then improved by the conjugate gradient algorithm and the Levenberg-
Marquardt algorithm. The reader could find more detail analysis in the Neural Network Design book by
Hagan et al., 2014.

Training of each neural network is executed until one of the following conditions occurs: a predetermined
number of iterations is executed or the error in a validation set goes up for several iterations.

Result Validation:
Once the models are created, it is important to test them against existing data to verify how well they
performed. To do so, a 2-step method is typically used:

• Validation level 1: Verification that the AI logs simulated for wells in training are a good match
with the measured data

• Validation level 2: Use of internal and external blind wells, i.e. wells that were purposely excluded
from training to be used in this phase – we also expect a good match between simulations and
measurements

Internal blind vs. external blind wells – in commercial applications when the model building and AI log
calculation are performed by a Service Company for an Operator, it is common to use an external blind
test, where the Operator has the measured logs available but provides them to the Service Company only
after the simulations results are generated, for validation purposes. So it is not uncommon to develop a
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model using first an internal blind and then add that well to the training deck for a more robust model before
comparing to an external blind test.

In all cases presented in this paper, the goodness of fit between the AI log and its measured counterpart
is quantified using the Normalized Root Mean Squared Error (NRMSE) defined in equation (1).

(1)

where X is the measured channel, Y is the AI log, N is the number of samples, and NRMSE is expressed
as a percentage. Within this framework, it is expected in our experience that simulated density will agree
with logging tool density within 2 to 3%, and compressional and shear slowness will agree within 4 to 7%.
These values are therefore used as criteria to validate the performance of a model for a level 2 validation
test (blind well). A tighter match (smaller NRMSE values) is however expected at level 1 (well in training).

Cases where a poor agreement is observed, especially at level 1, need to be re-examined to make sure
that the physics is correctly captured by the model and that all data is appropriately reviewed and corrected.

Generating AI logs for a test well
The model building phase was heavily Operator-driven. The simulation phase lends itself more easily to
automation and can be integrated in a desktop–based or cloud software platform such as that discussed later
on in this paper.

There are several key steps followed to generate AI logs:

1. Verification of compatibility of the geological context with existing model(s)
2. Data conditioning and QC for the test wells, i.e. the wells to simulate; this typically includes the

drilling data and LWD Gamma/Res only, as the advanced petrophysical logs are not available.
3. Model selection – selecting a model when a series of models is available

a. Based on spatial location and geological context
b. Based on input data range. In order to produce reliable results, the range of the input data must

be covered by the data in training. If one or more input channels is Out of Range (OOR),
adjustments need to be made, such as selecting a different model that does not use the channel(s)
that is (are) OOR. Figure 4 shows a case where the ROP is partly OOR.

4. Run the calculation engine run on the test well to generate the simulated output petrophysical logs

Figure 4—Example of histogram overlay to illustrate input range OOR; GR and WOB are in range, but ROP is partly OOR.
The training data includes all the wells used in the model, the test well data includes the data of that single well only.
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In the case where advanced log data is available for the test well, the validation follows the same steps
as for the blind wells used to evaluate the training models. However, in most cases there are no measured
logs available other than Gamma/Res – in these situations it is still possible to confirm confidence in the
results by:

• Using several models or models’ variations and comparing the results to evaluate the robustness
of the solution

• Quality Controlling the results by comparing with wells in training or if available with nearby
offset wells

• Verifying the trends of the simulated results, both amongst themselves and against measured curves
such as gamma.

Case studies/validation of the AI logs results
In this section we present 3 case studies where the Service Company was tasked by the Operator to build
models and generate AI logs based on drilling data; all cases are distinct offshore applications. For all cases,
we present results on simulations of DTC and RHOB, even though models for DTS and NPHI may have
been developed.

Case study I: Trinidad and Tobago East Coast Marine Area

Preamble
The first case study selected for this paper corresponds to a vertical and deviated offshore application in
Trinidad and Tobago. This case study used a total of 7 wells (including a couple of mother bore and side-
track holes) with drilling data and LWD logs provided by the Operator. The main challenge in this case is
the limited number of logs and drilling data spanning common depth intervals to train the model at the time
of the study (additional data is expected as the area continues developing).

The fields in discussion have either been producing since early 2000s or have been sufficiently appraised
in reservoir section. There is not enough incentive to risk radioactive and sonic tools in the overburden
section, and as such the overburden section usually have only LWD GR and RES planned in the development
wells. However, we believe logs particularly Density and compressional sonic in overburden could be used
in geomechanics borehole studies and real time monitoring. It would add value to the project by drilling
optimization and predicting potentially difficult to drill intervals. Primary objective of applying the AI based
technique is to generate logs in overburden to enable some of the geomechanics studies discussed above.
Another potential use of the predicted logs is in evaluation of sidetrack wells, where log data are often cut-
out to save costs and minimize operational risk.

AI Log Models
As mentioned earlier, the data available for model building was scarce and a main goal of the effort was to
determine if the AI method could be successfully applied in such a case. The amount of data available was
not the same for all the targeted channels and in some cases the entirety of data useful for training originated
from a single well. Figure 5 shows overlays of the simulated RHOB and DTC curves versus the measured
petrophysical logs in the mother bore. It was not possible to compare directly simulation and measured logs
in the same borehole as the sidetrack well was not logged. The overlays are shown in the portion of the
hole after the split between mother bore and side-track. Figure 6 also shows an overlay of the GR channel
for both wellbore to help in comparing the results. As shown in Fig. 6 the simulated curves are in good
agreement with the measurements in the mother bore. The corresponding NRMSE numbers are 4.4% for
RHOB when comparing the logs in the two holes aligned on MD. Notice that the areas with increased
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misfit between AI logs and measured logs correspond to areas where the rock also differs as attested by
the separation in the GR curves.

Figure 5—Figure shows the logged Density log in red and the AI predicted den
log in blue and the statistics of comparison of model and data is shown below.
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Figure 6—Figure shows the logged Density and sonic log in red and the AI predicted
den log in blue and the statistics of comparison of model and data is shown below
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Case study II: Offshore Gulf of Mexico (GOM1)

Preamble
The second case study is for a vertical and deviated offshore GOM application, but the location will remain
undisclosed. This case study used a total of 4 wells (2 mother bores, each with a side track holes) with
drilling data and LWD logs provided by the Operator. A key goal for the operator is to utilize the AI log
model in future wells to generate petrophysical logs in sections of the wellbore where advanced data cannot
be acquired due to hole size limitations or to infill data gaps in the event of missing data due to tool failures
or other operational issues. The operators is also interested in utilizing the real-time AI generated logs to
aid real-time pore pressure prediction. As for the first case, data scarcity is an issue. Some areas could not
be modeled with the data available at the present time. However others area could be modeled and for the
sake of this paper we will focus on these results.

AI Log Models
The results shown in Figure 6 for DTC and RHOB, respectively, are based on a two-well model. In this case
the overlays compare simulations and measurements in the same borehole. The simulated curves match the
measurements reasonably well, with NRMSE numbers of 2.4% for RHOB and 4.8% for DTC.

Discussion
Generating AI logs from the drilling, mudlogging data and Gamma/Res logs have several advantages:

1. Increase the value of the information that is typically not utilized.

◦ Provide formation evaluation logs in intervals where even the basic tools such as RHOB, NEU
or DTC tools are not run

2. Real-time prediction for shallow hole sections without formation evaluation logs

◦ The integration of AI logs into the Operator's operations and software stack will be via a
developed Teclog plug-in into the Operator's desktop-based log analysis software platform.

◦ This Techlog plug-in leverages existing interpretative tools and WITSML capabilities available
in commercially available software. Customized workflows and visualizations are standardized
to allow for processes tailored to the AI model creation and model operations processes,
including streamlined data conditioning, ANN model selection, and QC of input and output logs.

3. Using cloud and microservice technology to simplify technology collabroation

◦ The software architecture incorporates a cloud architecture design for the backend and a
lightweight user interface which plugs directly into the user's desktop software. Once the input
logs and drilling data have been selected, they are packaged, encrypted and sent to the cloud for
processing. Alternatively, the processing can occur on a local server.

4. Manage by Petrophysicist or Geologist and no data transfer required with third party company

◦ Running in a secure environment, the input data is decrypted and then processed by the neural
network. The results are then encrypted and delivered back to the user and displayed in their
desktop tool. This architecture has the advantage of centralizing the management of the available
neural network models, including versioning and storing metadata on how the network was
trained.
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Conclusions
The results of this study indicate the ANN methodology provides synthetic logs data comparable to
measured conventional LWD or wireline logging tools over the study area. This required adequate
calibration of offset wells data and understanding of the geological settings. Due to the inherent uncertainty
and errors in AI logs, for reservoir characterization and pay calculation, measured LWD or wireline logs
are crucial for the reservoir hole section, which is pivotal for further calibration of the ANN model and
prediction in area of the reservoir section without data due to borehole or environmental conditions.

In summary the AI log approach provides several benefits:

• These include a framework for producing DTC, DTS, NPHI and RHOB logs in one pass from
a standard set of drilling and mudlogging data, which is undeniably a step-up from having no
information as is the case with overburden intervals.

• The next step going forward is to use the technology in generating synthetic/AI logs for potential
applications real-time drilling optimization, borehole stability studies and pore pressure prediction,
especially for the shallow hole or overburden sections monitoring.

To ensure effective operational implementation of the AI log methodology, a Techlog plug-in is being
developed to aid with real-time data ingestion, processing and visualization of the AI logs – and integrate the
delivery with other petrophysical analysis workflows. By leveraing cloud and microservice technology, it
makes logs data processing and capabilities collaboration much easier and allows the use of more powerful
hardware for use in large model creation exercises and real-time model operation scenarios. The Techlog
GUI plug-in into the user's desktop software allows for streamlined integration of existing software tools
to QC both (i) measured logs and drilling data before usage as part of model creation, and (ii) the AI logs
generated by the ANN.
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